Size of data in implicit function problems and singular perturbations for nonlinear Schrödinger systems
نویسندگان
چکیده
We investigate a general question about the size and regularity of data solutions in implicit function problems with loss regularity. First, we give heuristic explanation fact that optimal found by Ekeland Sere their recent non-quadratic version Nash-Moser theorem can also be recovered, for large class nonlinear problems, quadratic schemes. Then prove this observation applies to singular perturbation Cauchy problem Schrodinger system studied Metivier, Rauch, Texier, Zumbrun, Ekeland, Sere. Using free flow component decomposition applying an abstract Nash-Moser-Hormander theorem, improve existing results regarding both solutions.
منابع مشابه
Singular Perturbations of Some Nonlinear Problems
In this paper we deal with singular perturbations of nonlinear problems depending on a small parameter ε > 0. First we consider the abstract theory of singular perturbations of variational inequalities involving some nonlinear operators, defined in Banach spaces, and describe the asymptotic behaviour of these solutions when ε → 0. Then these abstract results are applied to some boundary value p...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
On a class of nonlinear fractional Schrödinger-Poisson systems
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...
متن کاملNonlinear Schrödinger equation with spatiotemporal perturbations.
We investigate the dynamics of solitons of the cubic nonlinear Schrödinger equation (NLSE) with the following perturbations: nonparametric spatiotemporal driving of the form f(x,t)=a exp[iK(t)x], damping, and a linear term which serves to stabilize the driven soliton. Using the time evolution of norm, momentum and energy, or, alternatively, a Lagrangian approach, we develop a collective-coordin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2022
ISSN: ['0294-1449', '1873-1430']
DOI: https://doi.org/10.4171/aihpc/56